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An experimental study of the stratified flow over triangular-shaped ridges of various 
aspect ratios is described. The flows were produced by towing inverted bodies through 
saline-water solutions with stable (linear) density gradients. Flow-visualization 
techniques were used extensively to obtain measurements of the lee-wave structure 
and its interaction with the near-wake recirculating region and to determine the 
height of the upstream dividing streamline (below which all fluid moved around, 
rather than over the body). The Froude number F( = U/Nh)  and Reynolds number 
(Uh/v ) ,  where U is the towing speed, N is the BrunGVaisala frequency, h is the body 
height, and v is the kinematic viscosity, were in the nominal ranges 0.2-1.6 (and 00)  

and 200&16000 respectively. The study demonstrates that the wave amplitude can 
be maximized by ‘tuning’ the body shape to the lee-wave field, that in certain 
circumstances steady wave breaking can occur or multiple recirculation regions 
(rotors) can exist downstream of the body, that vortex shedding in horizontal planes 
is possible even at E’ = 0.3, and that the ratio of the cross-stream width of the body 
to its height has a negligible effect on the dividing streamline height. The results of 
the study are compared with those of previous theoretical and experimental studies 
where appropriate. 

1. Introduction 
The flow of a continuously stratified fluid over two-dimensional obstacles has been 

a subject of study for many years. Theoretical studies have generally been based on 
either small-perturbation, linearized types of model (Lyra 1943 ; Queney 1948 ; 
McIntyre 1972) or models that assume a steady flow with, generally, a particular form 
of the upstream boundary conditions, which results in a linear equation for the 
streamline displacements (Long 1953 ; Davis 1969). Using various obstacle shapes, 
both Long and Davis conducted experiments which, as far as the basic features of the 
lee-wave field behind the obstacles were concerned, demonstrated reasonable 
agreement with the predictions of ‘Long’s model ’. 

The important dimensionless parameters are K = ND/nU,  F = U / N h  and 

t Permanent address : National Oceanic and Atmospheric Administration, U.S. Department of 
Commerce. 
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e = nh/D, where U is the upstream velocity, N is the Brunt-Vaisala frequency based 
on the upstream density gradient, h is the obstacle height and D is the flow depth 
(EKF = 1 ) .  For n < K < n+ 1 ,  where n is an integer > 1 ,  the flow is subcritical with 
respect to the first n lee-wave modes. Therefore upstream disturbances corresponding 
to these modes can occur. Wei, Kao and Pa0 (1975) experimentally observed these 
‘columnar’ motions, which take the form of horizontal velocity profiles with 
sinusoidal structure in the vertical. Baines (1977) investigated the limitations of 
Long’s model in some detail, showing how both instability in the lee-wave fields and 
upstream disturbances violate assumptions inherent in the model. 

In  the three-dimensional case, the upstream motions, which similarly must occur 
at low F ,  have much lower amplitudes because they can spread horizontally. 
However, the general problem of stratified flows over three-dimensional obstacles is 
more difficult to handle theoretically, and therefore less well understood. Only 
Crapper (1962) and, more recently, Smith (1980) have investigated the effect of 
changes in the spanwise aspect ratio of obstacles. Crapper extended his earlier (1959) 
linear theory of the flow over axisymmetric hills of low slope to elliptical hills, and 
demonstrated that, for a given hill height and streamwise length, increasing the hill 
(cross-stream) width generally leads to decreasing wave amplitudes on the flow 
centreline (y = 0, with z vertical), whereas increasing the streamwise length in 
proportion to the width leads to increasing wave amplitudes. Ultimately, the 
amplitudes decrease again for ‘long’ hills. The results showed that the idea originally 
suggested by Corby & Wallington (1956) applies equally well in three-dimensional 
flows, i.e. that the largest-amplitude waves are produced when a ‘resonance ’ between 
the mountain shape and the airstream occurs. Lilly & Klemp (1979) recently 
demonstrated that the atmospheric response ‘tends to be a strong function of the 
shape, as well as the amplitude, of the terrain’. I n  particular, they showed that 
nonlinear wave steepening produces the most intense waves for terrain with a gradual 
upslope and steep downslope profile. There is apparently very little experimental 
verification of these various theoretical results. 

For very low Froude number ( F  -g 11, Drazin’s (1961) nonlinear theory for 
axisymmetric hills can be used to deduce how strong the stratification must be in 
order for any given streamline to pass round rather than over a hill. Sheppard (1956) 
postulated that an air parcel can rise over a hill only if it  has sufficient kinetic energy 
upwind to overcome the potential energy required to raise the parcel from its 
upstream elevation to the top of the hill through the density gradient. He presented 
a general integral formula that can be used to calculate the kinetic energy required 
for a parcel tojust surmount a hill (i.e. all kinetic energy is converted into potential 
energy). His results can be written as 

where U is the velocity and p is the potential density of the air parcel far upstream 
at elevation zs ,  g is the gravitational acceleration and h is the hill height. The elevation 
zs may be considered a dividing-streamline height. That is, below zs, the air parcel 
has insufficient kinetic energy to surmount the hill and it must pass round the sides; 
above zs, i t  has sufficient kinetic energy to surmount the hill. 

For a uniform approach flow with a linear density gradient, this formula reduces 
to 

HJh = 1 - F ,  (2) 
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which is similar to Drazin’s (1961) theory 

H s / h  = 1 -PF, (3) 
where /3 is a constant. It should be noted that Sheppard’s argument neglects the action 
of pressure forces, so that strictly, as in Drazin’s theory, this result is only valid as 
F+O, when P = O(1).  

Hunt & Snyder (1980) (hereinafter referred to as HS) recently reported an 
experimental study that broadly confirmed the implications of these theories, at least 
for an axisymmetric, bell-shaped hill with a uniform approach flow and a linear 
density gradient. More recently, Snyder et al. (1982) provided a convincing demon- 
stration that Sheppard’s integral formula is valid for a wide range of hill shapes 
and upstream density profiles. 

Neither Drazin, Sheppard nor HS has investigated the effect of hill spanwise aspect 
ratio on the flow structure. At first it may appear that the criterion for determining 
the dividing-streamline height ( z s / h  = 1 --F) is inadequate for all aspect ratios. If the 
hill were ‘needle-like’, streamlines would easily pass around it,  independent of F ;  if 
the hill were two-dimensional, all streamlines would pass over the top. However, in 
neutral flow, even for a ‘needle-like ’ hill, all streamlines originating in the centreplane 
pass over the crest, even branches that were on the surface well upstream. The 
question, then, is: in a stratified flow, can all streamlines pass over the crest ? At the 
other extreme of a two-dimensional hill, upstream blocking can occur under strong 
enough stratification, so that streamlines originating a t  the lowest levels upstream 
could not pass over the crest. 

HS also investigated how the lee-wave structure affects separation behind a hill. 
Separation from the curved surface of the hill was boundary-layer controlled when 
the lee-wavelength A was much larger than the hill length L,  totally suppressed at 
lower Froude numbers that led to A = O(L)  and, for even lower F ,  controlled by the 
lee-wave field. In  the last case, separation occurred just upstream of the first lee-wave 
trough. Further discussions and experimental data for a polynomial hill, cone and 
hemisphere were presented by Snyder, Britter & Hunt (1980, hereinafter referred 
to as SBH). While most full-scale situations in which lee waves are important arise 
from hills of low-to-moderate slope (so that separation is not inevitable), some hills 
or mountains (and certainly large buildings) are sufficiently steep on the downwind 
side that separation is virtually fixed by the obstacle geometry. In  these situations, 
the lee-wave field can presumably alter the size of the separated region, but cannot 
suppress separation altogether. Further, because real hills (and buildings) have finite 
spanwise aspect ratios, the effect of the lee-wave field must in practice depend not 
only on F (even an F based on hill length), but also on the spanwise shape of the hill. 

The work described here was undertaken to investigate these various flow features 
as a function of hill spanwise aspect ratio. The experimental methods used are 
described in $ 2 ;  the major results are presented in $3.  Although many of our 
conclusions are rather qualitative, the use of flow-visualization techniques allowed 
a number of quantitative measurements to be made. We believe these results are not 
only interesting and instructive in their own right, but also help to broaden the 
current understanding of three-dimensional stratified Aows. 

2. Apparatus and techniques 
All the experiments were conducted in a large towing tank, 1.2 m deep, 2.4 m wide 

and 25 m long, a t  the EPA Fluid Modeling Facility. Details of the tank, the towing 
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Dye tZ 

FIGURE 1. Sketch of experimental arrangement (not to scale). 
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FIGURE 2. Surface-layer density variations: 0, after initial fill; 0 ,  after 5 tows; 
A, after a further 70 hours. 

carriage and the filling system are given by Thompson & Snyder (1976) and HS. The 
hills, which were made of acrylic plastic, were mounted on a flat baseplate (see figure 
l ) ,  suspended from the carriage, and towed upside-down across the water surface. 
The baseplate was immersed approximately 6 mm for each tow. 

Salt water was used to obtain stable density profiles. For this study, linear profiles 
with nominal BruntVaisala frequencies of 1.33 or 0.45 rad/s were used. Because the 
model height h was less than half that used in the previous experiment of HS, erosion 
of the density profile at the surface was relatively more significant. Figure 2 shows 
how the linearity in the surface layer was degraded by five consecutive tows and 
simple molecular diffusion and evaporation over one weekend. Rather than refill the 
whole tank every few tows (or days), an additional layer of brine was introduced a t  
the bottom, and the corresponding nonlinear layer at the top was removed by 
siphoning (skimming) whenever necessary. Figure 3 shows salinity profiles measured 
about two weeks apart, during which time 36 tows and 5 partial drains-and-refills 
(totalling about 22 cm depth) were made. The linearity and slope (cc N Z )  were well 
maintained during this period, although there was an increasingly thick region of fluid 
of nearly constant density accumulated a t  the bottom. We do not believe that this 
gradual change in the bottom boundary condition significantly affected the study 
results. 

Because we wished to investigate the influence of lee-wave fields on recirculation 
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Complete density profiles: 0, after initial f i l l ;  ., after 36 tows 
(totalling approximately 22 cm). 
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regions without the complication of boundary-layer-controlled separations (and the 
consequent uncertainties about the influence of Reynolds number), the models used 
had triangular cross-sections with height h = base-length. The spanwise width 
(between the vertical end faces) gave aspect ratios a ( =  W / h )  between 1 and 8.  
The geometry therefore ensured fixed separation points at the apex of the ridges, 
although the windward slope was sufficiently steep to promote upstream separation 
in addition. The details of this latter feature of the flow varied substantially with 
aspect ratio in the stratified-flow cases (in contrast to the neutral flow cases). How- 
ever, these variations did not significantly affect the qualitative nature of the 
downstream flow (see 5 3 . 1 ) .  

Several considerations were pertinent in choosing the ridge height h. First, i t  was 
necessary to ensure simultaneously that the upstream pressure field did not influence 
the flow near the leading edge of the baseplate and that the recirculating region 
downstream did not extend beyond the baseplate. Secondly, i t  was necessary to 
ensure that the flow would be subcritical with respect to as many wave modes as 
possible, thus more closely simulating the ‘ infinite-upper-boundary ’ case. Therefore 
c = nh/D had to be as small as practically possible. (In the HS experiment, 6 = 0.65, 
so that for F = 1 only one lee-wave mode was possible, rising to 3 a t  F = 0.4.) Moving 
the upper boundary as far away as possible also reduces the amplitudes of the possible 
upstream columnar motions ; these are always more significant when upward 
radiation of energy is prevented by a ‘rigid’ lid a t  D < 00 and wave reflection 
therefore occurs (Miles 1968; Baines 1979a). 

Based on these considerations, a ridge height of 9 ern was selected, allowing about 
10h upstream distance and 15h downstream on the baseplate (see figure 1 ) ;  thus, 
even for a = 8 ,  no significant effects were expected from the ends of the baseplate. A 
double-sized version of the hill with a = 1 was also constructed; with the 3 :  1 range 
in N ,  this enabled a 6 : 1 variation in Reynolds number at constant F to be obtained. 
For the 9 cm hills, c was about 0.26, which usually allowed the flow to be subcritical 
for a t  least 4 lee-wave modes when F < 1 .  

Two small holes were drilled on the rear face of each hill, one near the top and the 
other a t  ih, thus enabling coloured dye to be injected directly into the wake. Similar 
holes were placed in thc baseplate at intervals of ih along the flow centreline 



266 I .  P. Castro, W .  H .  Snyder and G. L. Marsh 

( y  = z = 0) downstream of the hill. During each tow, dye that was slightly heavier 
than the surface layer was slowly ejected from these holes to form miniature ‘plumes ’. 
The motion of these plumes was carefully observed to establish reasonable estimates 
of the mean lacations of centreline reattachment or separation points. 

Considerable use was also made of a technique analogous to the surface oil-flow 
method used in wind tunnel studies. Before starting a tow, a line of blue dye slightly 
lighter than the surface layer was laid spanwise across the basepIate near the leading 
edge. With suitable adjustment of the density difference (which had to be adjusted 
for different towing speeds), this dye line was swept downstream past the hill, 
eventually delineating quite clearly the upstream separation line and, often, the 
three-dimensional separation behind the hill. 

The shadowgraph technique, as used by HS to visualize the lee-wave structure, 
was much less useful in this study, mainly because of the optical difficulties in lighting 
the necessary flow regions, which were much closer to the baseplate than they were 
for the considerably larger hill used by HS. However, extensive use was made of 
multiple dye streamers. These were injected on the centreplane ( y  =; 0) at a distance 
9.5h upstream of the hill and a t  height intervals of 2 cm to about 2.5h from the 
surface. The procedure for ensuring that each streamer initially had the same density 
as that of its surroundings was described by HS. 

Because the detailed characteristics of the flow near the hill were expected to 
depend partly on the nature of the upstream boundary layer, a fairly substantial 
tripwire (5  mm) was positioned about 5 cm from the leading edge of the baseplate. 
This tripwire ensured a turbulent boundary layer for all neutral flow cases, but 
stratification prevented transition for F < 0.6. Possible effects of this are discussed 
later. 

Still photographs and/or motion pictures were taken a t  nominal Froude numbers 
of 0.2, 0.4, 0.6, 0.8, 1.0, 1.3 and 1.6 for each hill, using all the flow-visualization 
methods (not necessarily simultaneously !) ; lighting arrangements were similar to 
those described by HS. Some ‘baseline’ experiments in neutral flow ( F  = CO) were 
also conducted. Although many of our quantitative measurements of the steady flow 
phenomena are based on photographs, deductions, particularly those concerning the 
turbulent recirculating downstream regions, are based on copious notes made during 
visual observations of very many tows. 

3. Results and discussion 
3.1. The upstream jlow 

3.1.1. Dividing-streamline heights 

For these runs, a red dye streamer was placed a t  the dividing-streamline height 
predicted by (2); blue streamers were placed 1 cm above and below this height. 
According to the dividing-streamline concept, the upper streamer should pass over 
the hill, the lower one should pass round the sides, and the middle one should split. 
Visual and photographic observations were used to assess the accuracy of the 
z,/h = 1 - F result. Figure 4 presents the data for the two extreme-aspect-ratio cases 
(a = 1 and 8). Although the experimental uncertainty was not insignificant, no trend 
with aspect ratio was evident. Estimates of zs from the multiple dye streamer 
experiments designed to highlight the lee-wave structure (see 3.2 and e.g. figure 
7)  were broadly consistent with this result. 

Figure 4, in conjunction with results of HS and SBH, illustrates that the 
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FIGURE 4. Dividing-streamline height; a = A, 1 ; 0, 8. I, scatter bar. B = 2 line is Baines’ (1979) 
smallest gap case (‘a’ % 8). /3 = 1 line is the z s / h  = 1 - F line. 

dividing-streamline height follows the ‘ 1 - F’ rule for P < 0.3, but deviates signific- 
antly a t  higher Froude numbers. This is almost certainly due to the formation of an 
upwind vortex (see figures 8c ,  l l a )  that  produces some downwash on the front face 
of the ridge, so that some of the streamlines having sufficient energy to surmount 
the hill are, in fact, pulled downwards by the low pressure in the horseshore vortex 
and find i t  ‘easier’ to  pass round the sides of the hill. I n  neutral flow, the upwind 
slope of the hill is sufficiently steep to promote upstream separation and a consequent 
vortex flow; this vortex only disappears at F < 0.3, when the flow becomes largely 
confined to  horizontal motions. Note that the dividing-streamline concept only 
addresses the question of whether a particular fluid parcel can surmount the hill ; even 
if it has sufficient kinetic energy to  surmount the hill, if it  is not on the (vertical) 
centreplane of the flow, i t  may go round the sides. This certainly happens with wind 
meander in the field and did happen with secondary flows in our towing tank 
experiments. 

The only other relevant data is that  of Baines (19793), who studied the ‘inverse’ 
case of a nearly two-dimensional hill with an increasingly wide gap at one end between 
the hill and one sidewall of the towing tank. His method of determining zs is 
questionable because the dye was injected a t  various angles to the horizontal, and 
because,’ in general, i t  did not have the same density as the surrounding fluid a t  the 
height of injection. In  the case of the smallest gap (&), the most closely two-dimensional 
case (largest 01 in present terms), Baines foundp x 2, but with rather large error bounds 
of 1.6 < p < 2.4. He also found that p decreased sharply as the gap width increased, 
to a value of about 0.8 at a gap width of$. In  the present study, the ‘smallest gap 
width ’ (about 6) was nearly twice as large as the largest gap width ($) in Baines’ study, 
so that our results do not overlap with those of Baines. The simple energy arguments 
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of Sheppard (1956) worked well in the present case, provided that upstream vortex 
motions were not strong (F < 0 .3 ) .  It seems that /3 = 1 ,  whatever the shape of the 
hill, which is a very useful ‘rule of thumb’ for the full-scale situation of effluent 
sources upwind of hills. However, changes in stratification with height and velocity 
shear in the upstream flow may have significant effects on p (see Snyder et al. 1982). 

3.1.2. Upstream separation 

Figure 5 shows a sequence of surface flow patterns for the a = 1 hill with F = co, 
1.0 and 0.8,  and the a = 2 hill with F = 0.8.  For F = 00, separation occurred a t  a 
distance 1-1.5h upstream for all a; this distance increased slightly as the towing speed 
decreased sufficiently to cause the upstream boundary layer to be transitional or to 
remain laminar all the way to separation. Figure 5 ( a )  is typical of the neutral flow 
cases in which a turbulent upstream boundary layer existed. No direct measurements 
of the upstream boundary layer were made, but on the basis of standard formulae 
for turbulent-boundary-layer growth in zero pressure gradient, its thickness a t  the 
location of the body but in its absence would have been about 3 ern (one third of 
the body height). For F < 00 the tendency for this to increase because of reduced 
Reynolds number would be counteracted by the damping effects of the stratification. 
Under stratified conditions, separation occurred increasingly earlier as F decreased 
and/or a increased. For example, figure 5 ( d )  shows that separation occurred about 
2.5h upstream. Figure 6 shows the data for all hills and includes the results for F = co. 
(In the latter case, the F-scale is effectively a velocity or Reynolds-number scale.) 
The boundary layer remained laminar to larger Re as F decreased, but this does not 
explain the very large upstream movement of the separation line as a increased. At 
F = 1.0, the boundary layer was always turbulent (and a t  F = 0.4 i t  was always 
laminar). However, for a = 8, separation occurred nearly twice as far upstream as 
it did for a = 1 (see figure 6).  Some runs undertaken with the double-sized a = 1 hill 
and/or different values of N confirmed that these changes were not essentially caused 
by changes in Reynolds number. 

A possible explanation is that, as a increased, the upstream-propagating wave 
modes (although still limited in extent by the three-dimensional nature of the flow) 
became stronger near the hill and, in particular, led to more extensive regions of 
blocking a t  the very lowest levels. This would lead to earlier separation. A t  very low 
F (say F < 0.4) vertical motions became increasingly inhibited, so that the flow was 
more like the free flow over a vertical two-dimensional body (see 53.3) and the 
‘ separation ’ line moved back towards the body again - it  can perhaps no longer be 
described as a separation line in the usual sense. 

The results presented in the following sections suggest that these movements of 
the upstream separation point did not significantly affect the structure of the lee-wave 
field or its interaction with the downstream recirculating region. Other flow features 
evident in figure 5 are discussed later. 

3.2. The lee-wave structure 

Typical photographs of the multilevel dyestreak patterns are shown in figures 7 and 
8. Figure 7 demonstrates the effects of decreasing the Froude number while holding 
the hill aspect ratio constant. Figure 8 shows the effect of varying the aspect ratio 
while holding the Froude number constant. Quantitative measurements of lee 
wavelengths and amplitudes were deduced from such photographs ; direct visual 
observations showed that these quantities were essentially steady throughout any 
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FIGURE 5. Surface flow patterns. 
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FIGURE 6. Location of separation line (on y = 0) upstream of hill. 0, a = 1; 0 ,  2; 0 ,  4; A, 8. 
- + -, F = OD, all a (use Re-scale). I, typical scatter bar. 

tow, unless wave breaking occurred (see later discussion). The wavelength data are 
presented in figure 9. 

With Long’s (1953,1955) assumptions, principally that pu2 is constant with height 
far upstream, the well-known equation governing streamline displacement 6 is 

V26+kid = 0 ,  (4) 

where ki = Flu2. From this equation, it may be shown that, in two-dimensional 
flows, stationary lee waves exist only when 

nz (ki - k2,)i = - 
D ’  (5) 

where n is a positive integer and k ,  is the wavenumber 2znlA. The first lee-wave 
mode therefore has a wavelength A given by 

2nF _ -  - A 
h ( 1 - € 2 P ) a .  

Three-dimensional waves have a complicated structure, of course, but analysis 
indicates that lee waves have crests which diverge only slowly from the y = 0 
direction and the wavelength is the same as in the two-dimensional case, even for 
bodies with small aspect ratios. Wave kinematics shows the additional possibility of 
diverging waves, like ship waves on deep water (Scorer 1978; Gjevik & Martinsen 
1978). The results in figure 9 show that the axial wavelength A was close to the 
two-dimensional ‘limit’ for all a at F < 1. As a increased and F > 1, A increased 
above this limit. In  our experiments, E = 0.26, but since the flow separated from the 
ridge top, producing a wake whose height was somewhat greater than h, the effective 
E may have been somewhat larger. The theoretical relation for E = 0.4 (i.e. taking the 
effective height to be about 1.5h) is included in the figure and, within experimental 
uncertainty, the data are quite close to that result. Alternatively, the change in A 
with a at larger Froude numbers may be a result of the influence of the tank side- 
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FIGURE 7. Dye streaks for 01 = 1 ridge. Dye streaks ‘touched up’ for clarity. 

walls; for a = 4, the width W of the body was about 20 yo of the tank width and 40 % 
of the tank depth. 

Figure 10 shows how the wave amplitude (trough-to-peak height), measured for 
the first wave behind the hill occurring in the dye streamer originating a t  z / h  = 2.4 
(the ‘top’ streamer in the photographs), varied with F and a. For a > 4, wave 
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FIGURE 8. Dye streaks for F = 0.6. 

breaking occurred when 0.3 < F < 0.5. The vertical height a t  which this turnover 
occurred depended on both F and a. For example, for a = 4 and F = 0.4, breaking 
occurred below z = 2h, so the top streamline did not break but had a much lower 
amplitude than if breaking had not occurred (see figures l l a ,  12). In contrast, for 
a = 8 and F = 0.4, the top streamline ( z  = 2.4h) was directly involved in the 
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breaking instability, so that a wave amplitude measurement was not possible (see 
figure 11 b ) .  

Wave breaking depends, of course, on the maximum wave slope, rather than the 
amplitude. Figure 13 shows wave-slope data for streamers originating a t  z / h  = 1.6 
and 2.4, for the two extreme-aspect-ratio cases (a = 1 and 8). Note first that  breaking 
occurred a t  different Froude numbers for different heights. For a = 8, no breaking 
occurred up to a t  least z / h  = 1.6 for F = 0.4; breaking did occur a t  z / h  = 2.4. For 
F = 0.2, however, breaking occurred a t  z / h  = 1.6, so that wave slopes above that 
region were much smaller. Secondly, it is clear that  for a = 1 the wave slope decreased 
with increasing height for all F ,  whereas, for a = 8, the reverse was true, a t  least up 
to z /h  = 2.4. Figure 14 shows how the wave slope a t  z / h  = 1.6 varied with a a t  fixed 
values of F, and i t  is clear that  the lee-wave field can be ‘tuned’ by changing the 
hill aspect ratio. This appears to be the first laboratory evidence for three-dimensional 
bodies that supports the theory (Corby & Wallington 1956) that the hill shape and 
upstream flow characteristics can cause ‘resonance ’, although atmospheric evidence 
in support of this theory is strong (e.g. Klemp & Lilly 1978). Crapper’s linear theory 
for axisymmetric and elliptical hills demonstrates similar behaviour ; Lilly & Klemp 
(1979) provide the most recent example of a two-dimensional nonlinear theory 
showing the same effect. If Crapper’s (1959) results are applied to  an obstacle for 
which, in his notation, H / a  = 2 (corresponding roughly to  our a = 1 body) then the 
calculated lee-wave slope a t  a given height as a function of F is very similar to the 
curves in figure 13, although of rather lower amplitude. Peak wave slopes occur 
around 0.2 < F < 0.4, as they did in our experiments. This is an extrapolation of 
Crapper’s results far beyond the strict limits of linear theory (for which H / a  < 1, 
F $ 1 ) but i t  does suggest that the same mechanism of ‘ tuning ’ is operating,? namely 
a correspondence between the lateral dimensions of the obstacle and the lee-wave 
lengthscale U I N .  

t One might reasonably ask (as a referee has done) about the extent of this ‘tuning’ effect on 
the lee wave field. Further experiments, yet to be fully analysed, have indicated that, because the 
wave amplitude always decays fairly rapidly with y (and z), wave breaking tends to be fairly 
localized. When breaking does not occur, amplitudes are everywhere rather greater than when the 
flow is ‘detuned’. 
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FIGURE 10. Amplitude of first wave shown by streamer originating at z/h = 2.4. 0, a = 1 ;  0 ,  2; 
0 , 4 ;  A, 8. ., as for 0,  but with a breaking wave at  a lower level (figure l l a ) .  Dotted lines show 
regions of wave breaking. 

FIGURE 1 1 .  Dye streaks for F = 0.4. 

Whether the ‘tuning’ is directly due to the three-dimensional effects of changing 
the spanwise aspect ratio of the hill or indirectly due to  an effective increase in hill 
length caused by the longer recirculation region a t  larger a is unclear from the 
experiments. Analyses of the measurements of the distance xR to the first downstream 
centreline reattachment point ($3 .3)  did not lead to any identifiable trends in wave 
slope with, say, zR/A ; zR is evidently too simple a variable to  use to correlate wave 



Strati jed flow over three-dimensional ridges 

2.0 

275 

- 

I 

FIQURE 12. Same as figure 1 1  (a), but taken later. 

1.0 

0 
g 0.75 - 
VI 
0 

0.50 

0.25 

- 

- 

- !I 
1. - 1  

1 0  

- /O A‘ +/-OF 

, I 

0 a 

.-Breaking near = 2.4 
h 

/’ 

0 0.5 1 .o 1.5 
F 

FIGURE 13. Wave slope of first wave shown by streamers at z/h = 1.6 (solid symbols) and 
z /h  = 2.4 (open symbols): 0, 0,  a = 1 ;  A, A, 8. 



276 I .  P .  Castro, W .  H ,  Snyder and G.  L.  Marsh 

slope with ‘effective’ hill shape. For bodies like those used in our experiment, which 
necessitate some form of downstream separation region, the spanwise aspect ratio 
seems the most reasonable measure of body shape, although the cross-sectional shape 
will also affect the size of the recirculating region. 

Some general comments concerning the wave-breaking cases are in order. Visual 
observations showed that, although wave breaking took time to develop, once it had 
occurred it remained a fairly steady phenomenon and did not significantly change 
character or location throughout the remainder of the tow. (CinB films confirm that 
behaviour.) However, there were occasions when wave breaking began immediately 
prior to the end of the tow. In  these ‘ just-critical’ cases, a steady flow may have taken 
longer to develop. Alternatively, they may have been ‘just subcritical ’, but were 
affected by slightly changed flow conditions near the end of the tow, possibly caused 
by the reflection of upstream-propagating modes. In  any event, the range of Froude 
numbers and hill aspect ratios that lead to wave breaking (suggested by figures 10 
and 13) may be slightly underestimated. The evidence suggested, however, that, for 
these triangular-shaped ridges, wave breaking occurred if (very roughly) a > 3 and 
0.15 < F < 0.5. In  addition, the Froude-number range for wave breaking apparently 
increased as a increased, but further experiments would be needed to quantify the 
behaviour . 

Finally, wave breaking can occur quite independently of the fully turbulent wake. 
Figure 12, a photograph taken a few seconds after the photograph in figure 11 a ) ,  
shows a distinct region of laminar flow between the rotor created by the wavebreaking 
and the eddy motions contained in the turbulent wake. This laminar region extends 
a considerable distance downstream. The stratification tends to suppress the wake 
turbulence, and a study of the far-wake flow would give little clue as to the presence 
of a breaking wave upstream. Similar behaviour has been observed in the atmosphere. 
I n  particular, the well-documented case of exceptionally strong mountain waves 
along the slope of the Colorado Rocky Mountains that occurred in January 1972 (Lilly 
& Zisper 1972; Lilly 1978) showed regions of strong turbulence near locations of 
maximum wave slope quite separated from turbulence at lower altitudes in the lee 
of the mountain. 

3.3. The wakeJtow 
3.3.1. F > 0.4 

Most of our deducations concerning the nature of the recirculating regions and wake 
flows were based on visual observations. Estimates of the average location of 
reattachment or separation points were most easily obtained by studying the 
movement of the small dye plumes injected into the wake. Since the flow was highly 
turbulent, still photographs were of little use ; cine pictures, however, generally 
confirmed the conclusions based on the many visual observations. 

Although the recirculating region behind a three-dimensional obstacle cannot be 
properly regarded as a ‘closed cavity’ zone (e.g. Hunt et al. 1978), the distance xR to 
the downstream centreline reattachment point can often be used as a measure of the 
extent of the region of backflow. For neutral flow, xR generally increases with the 
body’s spanwise aspect ratio, reaching some asymptotic value (as a + a )  that 
depends on the body shape and the nature of the upstream flow. Figure 15 shows 
how xR varied with a in our study. The Reynolds number based on body height ranged 
from 4500 to 25000. Over this range, the upstream boundary layer was turbulent 
and any variation in x R / h  with Re was within the experimental uncertainty. For 
smaller values of Re, slight reductions in xR were noted. While no conclusive 
measurements were made for a two-dimensional ridge in neutral flow, xR/h in that 
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FIQURE 15. Location of downstream reattachment point on centreline: 0, F = 00 (neutral 
flow); 0 ,  1.5; A, 1.0; 0, 0.6. 

case would probably have been about 12, somewhat smaller than that obtained for 
a two-dimensional flat plate, because the surface slope of the body just upwind of 
the separation point was smaller (Good & Joubert 1968; Castro & Fackrell 1981). 

Based on the earlier work of HS, SBH and others, we anticipated that the addition 
of stable stratification, with the consequent presence of lee waves, would either 
promote early reattachment or delay reattachment, depending on the ratio A/xR of 
the lee-wavelength A and x R  in neutral flow. The results for F =  0.6, 1 and 1.5 
are included in figure 15; these results confirm our expectation. For F = 1.5, the 
separated region was always considerably reduced in size, but, for F = 0.6 or 1 ,  
reattachment could be substantially delayed (at  intermediate values of hill aspect 
ratio - those that generally yield maximum wave slopes; see 5 3.2). In  the latter cases, 
the low pressures under the first lee-wave downslope (Scorer 1978) were clearly 
insufficient to promote early reattachment, but the rising pressure under the first 
upslope was sufficient to delay reattachment. I n  the former cases reattachment 
usually occurred just upstream of the first trough in the lee-wave field, or earlier if 
the neutral flow x R / h  was upstream of that. In  the early-reattachment cases, x R / h  
depended much less on hill aspect ratio than it did in neutral flow, being controlled 
essentially by the lee-wave field. 

For each hill, the variations that occurred in the flow patterns as F was reduced 
were qualitatively fairly clear. Figure 16 presents ‘composite ’ plots of the various 
flow features for a = 2 and 8. The first change as F was reduced was simply a 
reduction in the extent of the recirculating region, as discussed earlier. For F < 1.5, 
it was also possible to detect regions of slow-moving fluid downstream of reattachment 
and roughly one wavelength from the hill (i.e. under the first lee-wave crest); this 
is indicated in the figures. In  some cases, the lee-wave field was sufficiently strong to 
promote a secondary separation and subsequent reattachment in these regions and 
occasionally a further region of slow-moving fluid could be seen under the second 
lee-wave crest (figure 16a, F = 0.75). 

Figures 5 (b-d) present surface streak patterns and illustrate another feature of the 
flow in the intermediate-Froude-number range (0.4 < F < 1 .O). Recall that all the dye 
originated from a spanwise line a t  about x / h  = - 10. In  the neutral case (figure 5a), 
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FIGURE 16. Features of the wake flow: 0, first centreline reattachment;m, regions of slow-moving 
fluid, or reversed if separation ( S )  and reattachment (R) are indicated; I I I I I I ,  ‘necking’ location 
(see 3.3.1 and figure 5). (a) ,  a = 2;  ( b )  8. 

the downstream ‘necking’ occurred around the reattachment region and was 
very similar to that seen in wind-tunnel flow-visualization studies. The addition of 
stratification produced a marked change. Under stratified flow, the ‘necking’ 
occurred just beyond the first lee-wave trough ; its location moved downstream with 
increasing F (compare figures 5 b  and e ) .  This was followed by strong spanwise 
three-dimensional separations on either side of the flow centreline ; the limiting 
streamlines behind the necking position are much more clearly delineated than in the 
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neutral flow case and correspond to lines along which the spanwise velocity very close 
to the surface changes sign. Now stratification in the flow around three-dimensional 
bodies leads to baroclinically generated axial vorticity in the wake of the same sign 
as that produced by velocity shear in the upstream flow and/or separation from the 
faces (see e.g. Scorer 1978; Baines 19796). It may be this reinforcement of axial 
vorticity that leads to such strong and stable spanwise separations in the near wake. 
This general feature was visible even for a = 4, but a more careful examination of 
the phenomenon is needed. Visualization of multilevel dye streaks originating near, 
say, y = k i W ,  would have been helpful in this respect. We do not believe that there 
is any direct connection between these vortex motions and the curious ‘cowhorn’ 
eddies observed by Brighton (1978); such eddies were not noticed in the present 
studies. 

3.3.2. F < 0.4 
For very low Froude numbers the flow was constrained to move in horizontal 

planes, as anticipated. Very clear spanwise vortex shedding was also evident, even 
for F as large as 0.3. Figure 17 (plate 1)  shows shedding a t  F = 0.2 behind the a = 1 
ridge. In  this case, red dye was injected from the hole in the rear face at z / h  = 0.5 
and yellow dye was injected from the hole nearer the top. Estimates of the Strouhal 
number f W / u  based on shedding frequency, f ,  towing speed and hill width were 
between 0.14 and 0.18, without any apparent trends. These estimates are typical of 
values obtained in neutral flow past a flat plate or rectangular body, which is what 
the flow really ‘sees’ a t  such small F (at  least not too near z = h) .  The values are 
somewhat smaller, however, than those found by Brighton (1978) in studies of 
low-Froude-number flows past hemispheres, cones and truncated cylinders. HS found 
that vortex shedding ceased for F 2 0.2. Brighton also found that vortex shedding 
ceased for F > 0.15 and that this ‘critical’ Froude number did not depend on the 
Reynolds number for Re > 500. His maximum Re was only 0(103), whereas in our 
study Re was as large as 0(104) for the double-sized (h  = 18 em) a = 1 ridge, which 
produced clear vortex shedding a t  F = 0.2 and rather weaker shedding a t  F = 0.3. 
In all cases, the vortex street took longer to develop as F increased, until a t  F = 0.4 
the wake merely ‘meandered’ in a way reminiscent of the flow behaviour in 
Morkovin’s (1964) ‘incipient Karman range ’. 

An interesting feature of the vortex-shedding cases, shown very clearly by the cine 
pictures, was that the convection speed U, of the vortices wasgreater a t  z = & h than 
it was a t  z = h. Indeed, estimates from the films indicated that, at z = 4 h, U, was 
about equal to the free-stream speed (so that the vortices appeared stationary in the 
camera’s frame of reference, which was fixed), whereas, a t  z = h, U ,  was only half the 
free-stream speed. A possible reason is provided by the nature of the upstream 
influence a t  low Froude number. Upstream-propagating columnar modes have a 
sinusoidal structure in the vertical (Wei et al. 1975), which must change the 
‘apparent ’ free-stream velocity a t  each height. Because the first-mode wavelength 
was about equal to h at F = 0.2, there will certainly be a maximum and minimum 
upstream propagation velocity below z = h, but the size of the difference in 
convection velocities is surprising and perhaps not wholly attributable to this 
mechanism. 

Finally, it should be emphasized that for 0.4 < F < 0.6, where the flow was not 
strongly constrained to horizontal planes except perhaps far downstream where the 
stratification had damped out the near-wake turbulence, it was very difficult to obtain 
an adequate ‘feel’ for the processes occurring in the near wake. It was impossible 
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to view the wake as simply a perturbed version of the neutral flow case, as was done 
for F > 0.6. For example, a t  F = 0.6 and a = 8, there was on average a centreline 
separation region subsequent to the early reattachment at x/h = 2.5 (see figure 16b) ,  
but no downstream reattachment was discernible and the flow was exceedingly 
complicated. It is well known that, in the case of flow past a two-dimensional bluff 
body remote from any boundary, the separated shear layers merge to form, on 
average, a ‘free’ stagnation point a t  about two body widths downstream (for 
cylinders or flat plates). I n  the present case, for F = 0.4 (a = 8), where the flow was 
more nearly horizontal, the indicated reattachment point, a t  x/h = 15, could there- 
fore readly he thought of as the location of the free stagnation point (at about 
x/ W = 2) behind a ‘two-dimensional’ body of width W .  

4. Conclusions 
Our experiments have confirmed the general effects indicated by previous theoretical 

and experimental studies of stratification on the flow over surface obstacles. In  
addition, our experiments have shown how the spanwise aspect ratio affects the flow. 
In  particular, we have shown the following. 

(1) The height of the upstream dividing streamline does not depend on the body 
shape and is in agreement with the implications of Sheppard’s (1956) and Drazin’s 
(1961) theories for F < 1, provided that upstream vortex motions are not significant. 
In  our study, upstream vortex motions limited the range of agreement to  F 5 0.3, but 
for bodies with less steep upwind slopes and no upstream separations the ‘ 1 - F’ rule 
is expected to hold up to F = O(1).  Snyder et al. (1982) recently confirmed that this 
result is, indeed, largely independent of body shape. 

(2) The amplitude of the lee-wave field can be maximized by ‘tuning’ the body 
shape and F ,  as Crapper (1959, 1962) and Lilly & Klemp (1978) suggest. For the 
triangulax-shaped ridges in our study, maximum wave amplitudes occurred a t  F z 0.8 
for all a, and maximum wave slopes occurred for 0.2 < F < 0.4 and a x 5. 

(3) I n  the latter cases, steady wave-breaking can occur, and its location (in height) 
depends on a and F.  Since Lilly & Klemp (1979) showed, for two-dimensional flow, 
that steep downslopes are much more effective than steep upslopes a t  producing 
strong lee waves, i t  is likely that the flow upstream of our particular bodies (which 
had steep upslopes) was much less significant in ‘tuning ’ the flow’s response than the 
changes in aspect ratio and/or the consequent changes in ‘effective ’ downslope caused 
by interaction between the lee-wave field and the separated region. For body shapes 
which do not lead to inevitable separation, the actual slope of the body, particularly 
on the leeward side, is clearly an important parameter, as Lilly & Klemp (1979) 
demonstrated. 

(4) As F decreased from 00, lee waves grew in amplitude and initially caused early 
reattachment, making the length of the recirculation zone much less dependent on 
a than in the neutral case. As F was further reduced (from, say, 1.01, the strength 
of the lee waves (measured by the wave amplitude) decreased sufficiently to  delay, 
rather than promote, reattachment. These conclusions are reminiscent of those of 
Hunt & Snyder (1980), who showed that the lee-wave field can control separation 
locations behind a smooth hill. I n  their study separation could also be boundary-layer 
controlled; in the present experiments it was fixed by geometry and the lee-wave field 
controlled reattachment hehaviour. The implications for the full-scale situation of 
effluent sources downwind of steep hills are obvious although it  must be borne in mind 
that the effects of nonlinear stratification, velocity shear or thin inversion layers in 
the upstream flow are likely to  be a t  least as important as differences in body shape 
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(Scorer 1978). As Hunt & Snyder (1980) pointed out, there is clearly a need for 
experiments using density gradients that  vary with height. 

( 5 )  The surface flow patterns in our experiments indicate that the baroclinically 
produced axial vorticity in the near wake reinforces that produced in the usual way 
by flow over a surface-mounted body sufficiently to promote strong three-dimensional 
separations downstream of early reattachment (for 0.6 < F < 1, at least). Further 
experiments are needed to examine the effect of this apparent axial vorticity on the 
dispersion of plumes. 

(6) For F = 0.4, the far wake ‘meandered’; as F was reduced, clear vortex 
shedding occurred. Strouhal numbers were independent of F ,  scaling simply on U 
and the body width, and were similar to  values (0.144.18) found for classic Karman 
vortex streets behind two-dimensional bodies at high Reynolds numbers. 

(7)  The effects of upstream-propagating modes and actual blocking at the lowest 
levels, both of which are much less prominent in three- than in two-dimensional flows 
(see e.g. Baines’ (19794 study of the latter), were twofold in our experiments. First, 
stratification caused separation of the upstream boundary layer to depend much more 
on hill aspect ratio than i t  did in the neutral case. As F was reduced, separation 
occurred earlier; this effect became more pronounced as 01 increased. However, this 
did not qualitatively affect the structure of the downstream flow. Secondly, our only 
explanation for the finding that the vortex-street convection speed varies dramatically 
with height is that the sinusoidal vertical structure of the upstream propagating 
modes cause variations in apparent free-stream velocity with height. 

Although our results broadly conform to the collected wisdom concerning stratified 
flow over three-dimensional obstacles, further experiments would be useful. We made 
no attempt, for example, to examine the spanwise structure of the lee-wave field, to 
investigate the growth and decay of axial vorticity, or to  find to what extent the 
downwind slope of the hill affects the flow for cases where separation remains fixed 
at  the ridge top. However, the subject is so complicated that we close with Scorer’s 
(1978) cautionary remark: ‘There is almost no systematic way of discussing the flow 
behind a three-dimensional obstacle of arbitrary shape when separation occurs ! ’ We 
believe, nevertheless that  the various dominant phenomena can be usefully studied 
and think that the experiments reported here substantiate that  belief. 
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FIGURE 17. Vortex shedding at F = 0.2 behind a = 1 ridge. Red dye injected atzlh 
= 0.5; yellow dye atz/h = 0.9. The body is moving from right to left and is some way 
to the left of the left-hand margin. (Photograph reproduced from cinC film.) 
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